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The upper bound on momentum transport in the turbulent regime of plane Couette 
flow is considered. Busse (1970) obtained a bound from a variational formula- 
tion based on total energy conservation and the mean momentum equation. Two- 
dimensional asymptotic solutions of the resulting Euler-Lagrange equations for the 
system were obtained in the large-Reynolds-number limit. Here we make a toroidal 
poloidal decomposition of the flow and impose an additional power integral con- 
straint, which cannot be satisfied by two-dimensional flows. Nevertheless, we show 
that the additional constraint can be met by only small modifications to Busse’s 
solution, which leaves his momentum transport bound unaltered at lowest order. On 
the one hand, the result suggests that the addition of further integral constraints 
will not significantly improve bound estimates. On the other, our optimal solution, 
which possesses a weak spanwise roll in the outermost of Busse’s nested boundary 
layers, appears to explain the three-dimensional structures observed in experiments. 
Only in the outermost boundary layer and in the main stream is the solution three- 
dimensional. Motion in the thinner layers remains two-dimensional characterized by 
streamwise rolls. 

1. Introduction 
Attempts to understand turbulent fluid flows based on suitably averaged equations 

invariably encounter the well-known ‘closure’ problem in which there are always 
more unknowns than equations. Progress is then dependent upon the introduction 
of a certain number of heuristic assumptions which inevitably compromise the final 
deductions. Upper-bound theory represents an alternative approach free from such 
assumptions in which rigorous bounds on chosen mean quantities are derived. The 
idea is to seek an extreme of some averaged flow quantity from a manifold of 
vector fields which satisfy only a reduced number of constraints implied by the 
complete equations describing the flow. Since the realized solutions are contained 
within this manifold, the deduced extreme then acts to bound the observed values. 
In principle, this bound can be improved by incorporating further information from 
the governing equations in the form of additional constraints until ultimately the set 
of vector fields must be the solution set and the bound is attained. In practice, the 
variational problems, which arise, quickly approach the complexity of the full system 
as constraints are added. The hope then is that the upper bound and optimizing 
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vector field may start to reflect features of the turbulent solution before this point is 
reached (see Howard 1972 and Busse 1978 for reviews). 

Formal upper-bound theory has its origins in the work of Howard (1963) who 
considered turbulent convection in a layer heated from below. Following ideas by 
Malkus (1954), Howard formulated and solved a variational problem to maximize 
the convective heat transport subject only to the two dissipation-rate integrals of the 
basic Boussinesq equations. Imposing the continuity equation as an extra constraint 
led to a substantially more involved problem to which Howard sought a separable 
solution. As a generalization of this, Busse (1969~) then discovered a new class of 
non-separable solutions to this problem which increased the bound for sufficiently 
large Rayleigh numbers. Encouraged by the similarity of his ‘multi-a’ solution with 
experimental observations, Busse (1970, referred to below as B70) extended his earlier 
work on bounding the momentum transport in turbulent shear flows (Busse 1969b, 
referred to below as B69) to incorporate the continuity equation as an additional 
constraint. This improved bound still exceeded experimental measurements by an 
order of magnitude, but again, the optimizing flow field exhibited close similarities 
with the observed turbulent flow. Previous efforts to improve this correspondence have 
focused on maximizing a so-called ‘efficiency function’ (Ierley & Malkus 1988; Malkus 
& Smith 1989; Smith 1991) defined as the product of a drag coefficient and the ratio 
of the fluctuation and mean dissipation rate integrals. As in the case of maximum 
transport, the optimal solution is a discrete spectrum of streamwise vortices. 

In this paper, we follow up an extension proposed by Busse (1978) and more recently 
rediscussed by Malkus & Smith (1989). Busse suggested that his earlier bound (B70) 
on the momentum transport for the turbulent shear flow might be tightened by adding 
a further constraint based on the poloidal power balance to the variational problem, 
which we formulate here in 32.1 using Lagrange multiplier methods. The chosen 
additional constraint is of particular interest because it forces the optimizing solution 
to become three-dimensional, even though experimental observations seem to confirm 
the salient features of Busse’s two-dimensional multi-a solution (e.g. Townsend 1956). 
With this in mind, we construct trial functions in $2.2 for the variational problem with 
planforms which modulate Busse’s streamwise rolls so that the motion exhibits weak 
three-dimensionality. An important ingredient is the presence of weak spanwise rolls, 
necessary to complete a potent triad interaction with the modulated streamwise rolls. 
By restricting our attention only to these solutions, we derive and solve a specialized 
form of the Euler-Lagrange equations in which the presence of higher-harmonic 
planforms is suppressed. These equations then define a simplified but nevertheless 
more tightly constrained optimization problem since the solution form is explicitly 
imposed. As a result, the calculated optimal momentum transport for this simpler 
problem provides a lower bound on the true maximal momentum transport attained 
over all allowable three-dimensional velocity fields. An upper bound on this true 
extremal value is provided by Busse’s two-dimensional multi-a solution since this 
is generally believed to be the true optimizing solution to the original (B70) less- 
constrained variational problem where the poloidal power condition is not imposed. 
Hence we may ‘sandwich’ the true extremum of our problem, with the thickness of 
this ‘sandwich‘ giving some idea of how effective the additional new constraint is in 
reducing the desired extremum. Indeed, since the ‘sandwich’ turns out to be so ‘thin’, 
it looks likely that our solution of the restricted problem also gives the lowest-order 
approximation to the more general problem. This is presumably because the true 
solution is a weakly three-dimensional solution with the excited higher harmonics 
having negligible effect. 
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In 53,  we briefly summarize Busse's (B70) multi-a solution, linking it to our preferred 
Lagrange multiplier formulation. In 94, we incorporate the poloidal power constraint 
and develop an asymptotic analysis of our weakly three-dimensional solution as 
a small perturbation of Busse's along lines explained above. Interestingly, three- 
dimensionality is restricted to the outermost boundary layer and main stream. Order 
of magnitude estimates are then discussed which appear sufficient to assess the effect 
of adding the poloidal power constraint to the problem of maximizing the rate of 
dissipation in turbulent Couette flow. A few concluding remarks are added in $5. 

2. Formulation 
2.1. The variational problem 

As in B70, we consider a homogeneous incompressible fluid of kinematic viscosity v 
between two parallel, infinitely extended, rigid plates at z = + i d ,  which are sliding 
across each other with relative velocity VO in the constant direction 1. Using the plate 
separation distance d and the viscous diffusion timescale d2/v to non-dimensionalize 
the system leads to the Navier-Stokes equation 

(2.1) 
d V  
?t 

- + + ~ V V + V p = V 2 V  

with boundary condition 

V = T i R e 3  at z = -ki, - 

where Re := V , d / v  is the Reynolds number. We make the standard assumption that 
the averages of the velocity components and their products over planes of constant z 
( denoted by an overbar ) exist and are independent of time for a statistically steady 
turbulent flow. The total velocity V can then be separated into mean and fluctuating 
components as follows: 

with U ( z )  := V ( x , t ) .  Averaging the momentum equation (2.1) and integrating once 
then gives 

d U  
~ + Re? + (2%) = 2%, 
dz 

where Q is the z-component of i?, 2 is the component parallel to the plates, and the 
angular brackets indicate the average over the entire fluid layer. It may be used to 
express the total power balance ( V  * (2.1)) in the form 

V ( x ,  t )  = U ( z )  + G(x, t )  

- 

(2.2) 

where Re2 is the dissipation corresponding to the laminar Couette solution. This 
implies that the quantity Re(GQ) represents the advective part of the momentum 
transport between the plates. Further application of (2.2) to the total power balance 
equation gives 

(\vx.i;l') + (1s - (ii$)l2) - Re(iiiij) = o 
(B70 equation (2)). 

At this point rather than maximizing p := (uw)  at fixed Re, Busse chose the 
equivalent but more accessible problem of minimizing Re for fixed p over the class of 
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vector fields u which satisfy the boundary condition v = 0 at z = &:, the continuity 
equation V * u = 0 and the total power balance equation. The last constraint (B70 
equation (2)) can then be used to efficiently reformulate the problem to one of 
minimizing the homogeneous functional 

(B70 equation (6)) over all solenoidal fields 2, which vanish on the plates. 
In this paper, we consider Busse's problem of minimizing the Reynolds number Re 

at fixed momentum transport subject to an additional new constraint derived from 
the poloidal power balance. Introducing the toroidal-poloidal decomposition of the 
fluctuating field 

with y = u = v, = 0 at z = k$, the poloidal and toroidal power balances are then 
just (Gp (2.1)) 

g p  = - op-- +up +nt ( E) 
and (Gl - (2.1)) 

(Busse 1978, Section VILB), where we have assumed that U = U ( z ) 2  and made the 
following definitions : 

with VH := 33, +$a,. These used in conjunction with the mean equation (2.2) then 
lead to the normal total power relation 

pRe = aP + 9t + ( (0 - (CT) 1 2 )  (P = (6)L (2.4) 

where o := op + or, together with the new poloidal power relation 

Re(op) + I7, + nt = gP + ((0, - ( c T ~ ) ) ( ( T  - (0))). (2.5) 

With this additional constraint, the minimization of Re at fixed ;i cannot now be 
recast in favour of a homogeneous functional and we are forced to construct the full 
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Lagrangian 

where y and 2 are Lagrange multipliers. 

2.2. The trial functions 
The poloidal power constraint (2.4) has two major effects on the subsequent optimal 
problem to be solved. Firstly, the constraint cannot be met by two-dimensional 
flows independent of the streamwise coordinate x, because then all the terms in (2.5) 
vanish except for the positive term ap. This means that Busse’s multi-a (stream- 
wise rolls) solution (B70) fails to satisfy the constraint in a fundamental way and 
the optimal solution is forced to be three-dimensional. Secondly, the cubically 
nonlinear term 17, + IIt introduces a new quadratic nonlinearity into the Euler- 
Lagrange problem, potentially changing its whole character. Evidence that it, in 
fact, does not is provided by experimental observations which appear to confirm 
the salient features of Busse’s streamwise rolls. As a result, we search for a slightly 
perturbed three-dimensional version of Busse’s multi-a solution to our optimal prob- 
lem. The simplest such is based upon a symmetric triad in wavenumber space as 
follows: 

J fl= 1 

where 

defines a rectangular planform of large aspect ratio and 

@,(x) := Jz C O S ( ~ ~ , X )  ( 1, << k, ) 

identifies the planform for the new spanwise rolls; they have been normalized so that 
(4:) = (@;) = 1. For this ansatz, the poloidal component of the stress vanishes, 
as does one of the nonlinear terms. Consequently, the poloidal power relation (2.5) 
simplifies to just 

and the Lagrangian becomes 
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where 
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The corresponding Euler-Lagrange equations are 

(2.12) 

to be solved subject to the boundary conditions 

d Wn = 8 , = 0  o n z = + i .  w =“=w-- dw 
dz dz n -  

(2.13) 

(2.14) 

Minimization with respect to variations of k, yields 

while in the case of E n  there are two possibilities: either t, = 0 with 1c2Wn = 0, or 
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I, # 0 with 

167 

Subtracting (2.16) from (2.15) gives 

(2.17) 

We now look for a solution with (i) y << 1 and (ii) l; << k i  so that Busse's solution is 
recovered at leading order. 

3. Busse's multi-a solution 

(2.5) is ignored, we set 
When only the total power integral (2.4) is imposed and the poloidal power integral 

y = o  

in (2.6) and recover Busse's (B70) problem but formulated with the additional La- 
grange multiplier 1. The link between the formulations is forged from the power 
integrals of the Euler-Lagrange equations, namely the vanishing of the functional 
derivatives d9" /3v  and i39/dy. They lead to the result 

which with (2.4) yields the explicit formula 

p(~" - Re) = ( 1 0  - (0)12) 

for A. 
The B70 optimizing solution is of the form (2.7) but two-dimensional with 

1, = 0 and 1i2W,, = 0 

for all n. It consists of N boundary layers (identified by each of the N harmonics) in 
which the appropriate stretched length is 

1/3 1 - 
< n  := (k$,kn) ( 3  + z ) ;  

here the dummy wavenumber kN+]  := p1/2 is introduced to simplify the notation. 
The nth harmonic has a triple-deck structure. Its inner boundary layer deck, which 
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defines the nth layer (tn = O(lj), has solution 
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in which 

6, = (kn/kn+l)2'3 
is the small aspect ratio of vertical-z to horizontal-x length scales. The solution in the 
intermediate deck, where the aspect ratio is O( l), makes no significant contribution 
to the optimization problem and so is not considered. The outer deck of the first 
harmonic (n = 1) coincides with the main stream (i - ( z I  = O(1) referred to as the 
zeroth layer), while those for the higher harmonics (2 < n < N )  lie in the (n - 1)th 

layer and have large aspect ratio SLly. The outer-deck solution for the (n + 1)th 
harmonic in the nth layer is 

The intriguing feature of Busse's multi-a solution (in our notation multi-k!) is the 
way in which the triple deck of the nth harmonic interweaves with its neighbouring 
(n + 1)th harmonic in order that the momentum transport remains close to its mean 
value in all layers except the wall boundary layer (n = Nj. With the definition 

h 

G(tn) := k,T:, ~ ( 1 -  Gn+lGn+l-  % n e n L  n = 1, ..., N -  1, 

where G(5,) is an 0(1) function whose properties are defined in the Appendix, the 
value of the mean velocity gradient dU/dz in the nth layer is 

The corresponding jump in mean velocity from the mid-plane ( z  = 0) to the upper 
boundary ( z  = i) across each layer is 

From the solution of the Euler-Lagrange equations, Busse (B70) determined an 
In our expression for Re, which he minimized with respect to each of the k,. 

formulation an equivalent procedure is the use of (2.15). In terms of 
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either method leads to Busse’s formula 

n = 2, ..., N - 1 (%) ’ I 3  = (&) li3 { i i / p ) - ! ,  = N ,  

~ N + I  = 1 

(B70 above equation (29)), where 

(B69 equation (3.27)), 

(B69 equation (A7) and below; the final identity was quoted by Busse (1978) between 
his equations (4.17) and (4.18) and we give its derivation in the Appendix via the key 
equation (A 4)) .  We rewrite the solution of the nonlinear recurrence relations (B70 
equation (29)) in favour of the parameter 

[j -? (0 / p 2 ,  (3.3) -2N-813 r, : = 4  

which gives 

From them we may express our aspect ratios in the form 

where 

As 61 << b2 << . . .  << a N ,  the scale separations necessary for the validity of the 
asymptotics only occur when 

8 N -  - ( k ~ p  2 ) ’ I 3  = 4-2i3(a/p)li2(pr,)-4-Ci(2--4-C) (3.7) 

is small. 
I t  should be emphasized that, whereas the contributions to the poloidal and 

toroidal dissipations g P  and 9, are comparable in each layer, it is only in the Nth 
layer adjacent to the wall that there is a significant contribution to the mean flow 
dissipation (IdU/dz/’). So to leading order, we have 

It is the same order of magnitude as ,uRe and so both terms must be retained in the 
balance (3.1) for il. In this way equations (3.1), (3.8), (2.11) and (2.12) reproduce B70 
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equations (21), (22) and (23), for which the solution is 
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(3.9) 
-1/2 312 (10 - (a)I2) = 806, ,LL , 9c = 9 p  = 4(1 - 4-N)~6i112p3/2. 

Together with (2.4) these yield the result 

Re = 8(2 - 4-N)~6G1J2p1J2 (3.10) 

(B70 equation (30)). The jumps in mean velocity from the mid-plane to the upper 
boundary are 

n=O 
AU, = - ~ b ; ; ~ / ~ p ~ / ~  3.4n-N, n = I , .  . , , N - 1 (3.11) { :: n = N  

consistent with the requirement that 
N 

Re = -2 AU,. 
n=O 

In the limit Re t cc the best bounds are achieved when N is large: 

N B 1 ,  

though, as we explain below, some care must be taken with the double limit in which 
N t co as well. For large N ,  the results (3.9) take on the simple form 

+ ( I D  - (cr)I2) = = gl = ipRe, (3.12) 

while the mean flow velocity jumps across each layer are particularly illuminating: 
N -  1 

- 2AUo = Re, -2 AU, = Re, -2AUN = Re. (3.13) 

In other words, as Busse (B70) explained, a mean shear U = -+Re2 is maintained in 
the main stream ( n  = 0). The main adjustment of U to the upper wall value --;Re 
takes place in the wall layer ( n  = N )  so that only a relatively small adjustment occurs 
in the outer layers (1 < n < N - 1). Indeed the contributions drop off rapidly from 
one layer to the next by the factor a quarter with decreasing n. 

Busse (B70) also poses the question “What is the optimum choice of N when 
p a?’’ Minimizing Re as a function of N (regarded as a continuous variable) leads 
to that value of N = No = ;(ln p /  In 4) + O( l), which solves 

n=l 

(3.14) 

(B70 equation (33)). Our representation (3.4) for k,  in terms of pYN and the resulting 
expression (3.5), which determines the aspect ratio 6,, highlight the fact that, in the 
limit (3.14), the necessary scale separation for the validity of the asymptotics is not 
strictly met. According to (3.5) the wavenumber of each successive boundary layer 
only increases by a factor 4: 

kn+l /k ,  = 4, 6, = 4-2J3 n = 1,. . . , No - 1 

(B70 equation (34)), while 

(3.15) 
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Consequently, (3.10) yields 

Re = Re, 47/3(,3p)1/4p1/2 (3.16) 

(B70 equation (31)). The result is very suggestive because of the simple power laws 
implied. Of course, in any physically realizable situation p though large is necessarily 
finite and the corresponding optimizing N is then only moderately large. 

Since aN0 is O(1) and not small, the asymptotic approximations are not justified 
as N increases up to No. We have, therefore, been careful to highlight the properties 
(3.12) and (3.13) of the dissipation rates and mean flow U respectively, which hold 
for large N in the valid limit 

h N  << 1 (prN >> 1, N >> I). (3.17) 

This is probably why the linear mean flow profile in the main stream predicted by 
(3.13) agrees so well with the experimental results (B70). The attractive feature of 
the bounding method is that we are not forced to take the value N = No;  instead, 
we are free to fix N and ask about the nature of the results as Re co consistent 
with the inequality (3.17). Within the framework of that class of trial functions, the 
asymptotically correct large-N solution is 

Re = (6N_/6N)li2ReO, (3.18) 

where 

d N , / f i N  = 4(N4)4-k (>> 11, 
valid when 

1 << N << InN, = U(In(1np)). 

These limits on N are extremely restricting and we may only speculate on how large 
we can push N to obtain physically reasonable results. Indeed, the boundary layer 
aspect ratios 6, = 4-*i3 ( n  = 1, ..., No - 1) appropriate to the case N = No are 
conceivably small enough. A plausible scenario is that (3.18) gives the correct bound 
with Re proportional to p”* (via Re,), but that the coefficient ( h N 0 / 6 ~ ) ” *  varies 
slowly with p possibly with a natural functional dependence on lnp. This would be 
compatible with experimental results over a finite range, which revealed a slope 2 for 
plots of Iogp versus log Re. 

Of course, the subtleties of the limiting procedures continue to plague the three- 
dimensional solution presented in the following section. Furthermore, we again only 
consider a limited set of trial functions but the new issues raised are of a different 
type, the point being to show that the addition of the poloidal power constraint does 
not alter the bound presented here at leading order. 

4. Poloidal power constraint 
When we take account of the poloidal power integral (2.5), we may derive an 

explicit formula for the Lagrange multiplier y as in (3.1) by forming the difference 
(rather than the sum) 
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where the terms neglected “. . .” vanish with our ansatz for which Cp = I IP  = 0. Using 
(2.8), it gives 

Whereas in Busse’s (B70) problem the toroidal and poloidal dissipations are equal, in 
our problem, y provides a measure of the departure from that equality. 

With 0 < y << 1, the method of solution proceeds through consideration of 
equations (2.8), (2.13) and (2.17). The Euler-Lagrange h equation with respect to W,, 
(2.13), can be viewed as an inner equation for W, forced by Busse’s multi-a solution & 
over the nth layer (i Tz) = O((k i+1k , ) - ’ /3 ) ,  together with an unforced outer equation 
for w, when (i T z )  = O(1;’). Assuming that dW,/dz = O(W,(k,2+1k,)1/3) at the 
edge of the inner region, the velocity in the outer region can be estimated simply as 
W,, = O(@n(k,2+lk,)1/3/l ,) ,  implying that 

gt-gp= ;y2$+ .... (4.1) 

A h 

- 

Hence the dissipation associated with Wn is essentially contained within the inner 
region. Furthermore, it will transpire that (ki+lkn)-1/3 << k;’ << 1;’ << (k ,2k,-1)-’ /~ 
so that En does not interfere with the next boundary layer. As a result, the outer 
solution En need not be discusEd further. 

Equation (2.13) determines W,/li uniquely for each layer n modulo an overall 
amplitude dependent on y. Independent of this, equation (2.17) implies an integral 
constraint on W,/l: for each layer which, in general, will be inconsistent with the 
solutions determined by (2.13). As a result En = 0 is forced in all but one layer for 
which the value of y may be chosen to allow consistency. Hence we have immediately 
that within our ansatz, streamwise variation will arise in only one triple deck. Guided 
by our earlier representation for G,(Z) in its inner deck, we cast the new inner solution 
in the form 

h 

h 

~ n ( z )  = (2dn)”*AnE(tn), (4.2) 
where A,  is a constant that can be defined at our convenience. Our choice and 
appropriate scalings are as follows : 

Here the power laws involving 

4-” - 4-N 

2(2 - 4-N) 
t n  := Pn - PN f 

are significant in so much as they relate to the ratio 

(u/p)-’I4, n = 1,. . . , N - 1 
II = N .  

I /*  (2) = ( P W t ”  { 1, 

(4.3) 

Within the framework of the boundary layer approximations, two integrations of 
equation (2.13) yields 

-i, 

W = --la 6’dt. (4.4) 
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The actual value of @ follows from two further integrations subject to 
h 

W(0)  = P ( 0 )  = 0. 

All that is required from this system is the O(1) quantity 

Note that these integrals are convergent, consistent with our earlier estimate that the 
dissipation in the outer region is negligible, because F'' like 6 is of order 5- l  as 

The amplitude A,t of the spanwise roll is fixed by the poloidal power constraint 
4 T a. 

(2.8) which gives 

where gnP is given correct to leading order by (3.9). In turn, its wavenumber 21, is 
fixed by the minimization condition (2.17) yielding 

n,, = 2p6,'12A, = p - 3 1 2 9  p ,  (4.6) 

l / 2  

(4.7) 
n =  I, ..., N - l  2 = [:] { t i / p ) l / 2 ,  n = N .  

With b, given at leading order by (3.2) and (3.4) we solve successively for a, and c, 
to obtain 

(4.10) 

From an asymptotic point of view, the solution with n = N is unacceptable, because 
tN is zero with the consequence that both y and lN/kN are of order unity, as is 
clear from (4.10) and (4.9). This means, for example, that our results are not 
applicable to Howard's (1963) ( N  = 1) problem for which the only available choice 
is n = 1 also. Our results suggest that the introduction of the poloidal power 
integral constraint (2.5) leads to a significant O( 1) change in Howard's result, but the 
precise modifications to his results cannot be predicted because of the failure of our 
asymptotic approximations. 

For fixed N > 1 and M < N, however, this large-p solution (4.8)-(4.10) is consistent 
with our initial assumptions that (i) y << 1 and (ii) I," << k:, hence justifying the regular 
perturbative approach adopted. The dissipation 9$ associated with the spanwise roll 
component is easily found by combining (2.8) with (WJ2.13)) to be O ( y )  relative to 
the dissipation associated with the streamwise rolls : 

(1 + y p $  = ;yp1/2nn = $ y p - ' g p .  (4.11) 

The corrections to w, and 8,, are also O ( y )  leading to O(y) modifications in @') and 
9;) from their B70 values consistent with (4.1). All this leads to the conclusion that 
the minimum Reynolds number Rek, determined by our theory exceeds Busse's value 



174 

Reb by an amount of O(y): 

Reks = Reb -k o(y). (4.12) 
In other words, at fixed Reynolds number, the reduction in the extremal dissipation 
rate is O(y) ( this may be formalized at the considerable expense of solving equations 
(2.11) and (2.12) for the O ( y )  corrections to w, and 0,). Since y is minimized (in 
order of magnitude) when n = 1, the minimum penalty for satisfying the new poloidal 
power constraint is exacted by placing the three-dimensionality in the uppermost 
layer. Here, evidently, the disruption to Busse’s two-dimensional multi-a solution is 
felt least. 

Though there is no guarantee that the perturbative trial solution discussed above 
will supply the true global minimum value of Re for our variational problem, it 
seems likely, however, that it does. That happens provided that the excitation of 
higher planform harmonics can be neglected in the lowest-order approximations to 
the complete Euler-Lagrange equations aLf/ay, = 0 and aLf/av = 0, which certainly 
appears to be the case. For our purposes, that tighter result is unnecessary; all that 
we need is the property that our solution necessarily supplies an upper bound on 
this minimum Reynolds number. A lower bound is provided by Busse’s (B70) result 
assuming that his multi-a solution really is, as conjectured, the optimizing solution for 
his less constrained problem. As a result, we can sandwich the true extremum of the 
dissipation rate for our problem between two estimates which agree to leading order 
in the Reynolds number. It is then clear that the imposition of the poloidal power 
constraint leaves Busse’s upper bound for the momentum transport in turbulent 
Couette flow essentially unchanged. 

When like B70 we take the optimum N = No, our results (4.9) and (4.10) become 
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(4.13) 

as p 1 co. Reassuringly, the optimal value (4.14) of y is small. On the other hand, the 
ratio (4.13) of the squared wavenumbers is of order unity and not small as required. 
Of course, this result is to be expected in view of the failure of the Busse solution to 
achieve proper scale separation in this limit. The actual numerical value of the ratio 
(4.13) depends on p,  which we may estimate to be roughly p 2 ;  its exact value, which 
we do not need, may be calculated from the formulae in B69, Appendix A. 

5. Discussion 
In this paper, through the restriction of our trial functions to simple planforms, we 

have established that the inclusion of the poloidal power balance as a new constraint 
on Busse’s original variational problem (B70) has no effect to leading order on 
the optimal dissipation rate. Busse’s optimizing solution merely adapts in the least 
disruptive way to the new constraint by adjusting its structure solely in the outermost 
boundary layer. The point is that the necessary size of the vital cubic interaction IT, 
in (2.5) and consequently the required amplitude of the spanwise roll component in 
each boundary layer is fixed by Busse’s solution. According to (4.11), the dissipation 
associated with the spanwise roll is then smallest if that roll is located in the outermost 
boundary layer. Encouragingly, the emergence of spanwise roll structure in the outer 
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regions of the boundary layers is seen in experiments. Kim, Kline & Reynolds (1971), 
for example, discuss the appearance of spanwise vortices at the edge of the turbulent 
boundary layer over a flat plate. 

More generally, the ease with which Busse's multi-a solution adjusts to the poloidal 
power constraint with minimal cost to the extremum does not auger well for the 
prospects of other as-yet-untried 'global' constraints. i t  may well be that the only 
way forward to improve Busse's result is to impose pointwise constraints across the 
channel width, forcing adjustment throughout the whole boundary layer structure. 
However, whether such constraints are available and any subsequent variational 
problem tractable remains to be seen. 

One of us, A.M.S., wishes to thank Professor Fritz Busse for drawing his attention 
to the problem considered here during his year visit (1 September 1977 to 31 August 
1978) to IGPP at UCLA. During that time he benefited from many stimulating 
discussions on bounding methods and the nature of his multi-a solutions. Noteworthy 
is the 18 year period before the emergence of a solution! 

Appendix 

dual regime problem 
The inner problem for each boundary layer except the Nth reduces to solving the 

A 

(A 1) 

(A 2)  

where G = 1 for 0 < [ < < *  and 520 = 1 (G unspecified) for < *  ,< [ < co. The 
boundary conditions are that D = 52 = 0 = 0 at [ = 0, and Q -+ const. as 5 -+ GO, 

together with the matching conditions at 4 = l* that 6, 0 ,  52, 6', 6", and 6"' are 
continuous, 66 = 1, and (66)' = 0. From (A 1) and (A2), we find 

6"" - GO = 0, 

6" + G C  = 0, 
A h  

A,  

-, - 
A hi h 

A modification of Howard's (1963) argument leading to his (62) gives 

Integrating the latter equation twice and using (A 3) leads to 
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